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SYNOPSIS 

A new algorithm for the calculation of monomer partitioning in emulsion copolymer systems 
is presented. The algorithm can be applied both to monodisperse and polydisperse systems 
and the outputs of the algorithm include the distribution of the volume fractions of the 
monomers according to the particle size distribution, the volume fractions of the monomers 
in the monomer droplets, and the aqueous phase and the total volumes of all the phases 
in the system. The algorithm can handle both Interval I1 and Interval I11 conditions, using 
the same set of equations. This results in substantial computer time savings during the 
simulation of emulsion copolymerization systems. Examples of applications are given. 
0 1994 John Wiley & Sons, Inc. 

INTRODUCTION 

Prediction of the monomer partitioning is of para- 
mount importance for the modelling of emulsion co- 
polymerization systems, because the polymerization 
rate and the composition of the copolymer, obtained 
in both the polymer particles and the aqueous phase, 
are determined by the concentrations of the mono- 
mers in those phases. Under most circumstances, 
the ratio of the rate of monomer mass transfer to 
the rate of polymerization is large enough to attain 
the thermodynamic equilibrium of the monomers 
between the phases. Since the pioneering article of 
Morton et al.,l much work has been carried out to 
establish the thermodynamic equations that control 
that equilibrium. References 2-5 are some represen- 
tative works. On the other hand, those thermody- 
namic equilibrium equations have been extensively 
used to predict the concentration of the monomers 
in the different phases of the system. References 6- 
9 are just a few examples of this application. In order 
to calculate the partition of the monomers, the equi- 
librium equations are combined with the overall 
material balances and the resulting system of non- 
linear, algebraic equations is solved. This can be 
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carried out using a standard Newton-Rhapson al- 
gorithm, but experience shows that this is a time- 
consuming algorithm and the convergence of the al- 
gorithm depends strongly on the initial guess. In 
addition, the number of equations to be solved varies, 
depending on whether there are or are not monomer 
droplets in the system. Therefore, the presence of 
monomer droplets has to be checked iteratively and 
this increases the computer time consumption. 

For monodisperse systems, in which the equilib- 
rium can be described by means of partition coef- 
ficients, Omi lo developed an efficient algorithm that 
ensured rapid convergence to the solution. The main 
limitations of this algorithm are that it cannot han- 
dle systems in which the equilibrium is described in 
terms of thermodynamic equations, and different 
sets of equations should be used for interval I1 and 
interval I11 conditions, namely, in the presence and 
in the absence of monomer droplets in the system, 
respectively. 

Most latexes are polydisperse and it is well known 
that, because of the interfacial free energy, swelling 
increases with particle diameter. However, to our 
knowledge no algorithm for solving monomer par- 
titions in polydisperse emulsion copolymer systems 
has been proposed. 

In this article, an algorithm for the calculation 
of the monomer partitioning in polydisperse emul- 
sion copolymer systems is presented. In this algo- 
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rithm, the polidispersity of the latex is accounted 
for, the equilibrium is described in terms of the 
thermodynamic equations, and that there is no need 
for removing from the system of nonlinear algebraic 
equations those corresponding to the monomer 
droplets when there are no monomer droplets in the 
system. Consequently, the presence of monomer 
droplets does not need to be checked, but it is one 
output of the algorithm. This results in substantial 
computer time savings when emulsion copolymeri- 
zation systems are simulated. 

BASIC EQUATIONS 

Let us consider a polydisperse unswollen latex, in 
which the unswollen size distribution, PSD, is de- 
fined by the number distribution function n( u )  , with 
which n( u )  du yields the total number of particles 
of size u to u + du. A monodisperse system is just a 
special case of the polydisperse one and, hence, it is 
included in the general formulation described below. 
The number of polymer particles and volume of 
polymer in the latex are, respectively, given by: 

N~ = 1; n ( u )  d u  

vp0l = j" u n ( u )  d u  

(1) 

( 2 )  

where uo and u1 are chosen in such a way that the 
whole PSD is included between the values. In ad- 
dition, the latex contains a volume of water W ,  as 
well as some volume of monomers A and B (V,  and 
Vs,  respectively), which are assumed to be distrib- 
uted between the phases according to the thermo- 
dynamic equilibrium. Under these conditions, the 
partial molar free energy of each monomer is equal 
in each of the three phases. Therefore, the following 
equilibrium can be written: 

where j = A ,  B and uo < u < ul. If the same standard 
state for component j is used in all phases, one has: 

where j = A ,  B and uo < u < u l .  The partial molar 
free energy of the monomers in the different phases 
is given by 4*5 : 

2auj( 47r4;( u )  ) 1/3  

( 3u)'l3RT (5) + 

( 7 )  

where 4," and $7 are the volume fractions of mono- 
mer j in monomer droplets and aqueous phases, re- 
spectively; 4; is the volume fraction of monomer j 
in the aqueous phase at saturation in the absence 
of other monomers, 4p( u )  and $:( u )  are the volume 
fraction of monomer j and polymer in a polymer 
particle of unswollen volume u ,  m,i is the ratio of 
the equivalent number of segments of monomers j 
and i, uj is the molar volume of monomer j ,  a is the 
interfacial tension, R is the gas constant, T is the 
temperature, and xji is the interaction parameter. 
The last term of the right-hand side of eq. ( 5 )  ac- 
counts for the interfacial free energy. The other 
terms give the free energy of mixing of monomer 
and polymer, expressed in terms of the classical 
Flory-Huggins theory." 

Equation (6)  uses the Flory-Huggins lattice the- 
ory to calculate the partial free energy of the mono- 
mers in the  droplet^.^ In addition, in this equation, 
the interfacial contribution to the partial free energy 
of the monomer droplets has been neglected because 
of the usually large size of the monomer droplets. 
According to published  result^,^ eq. ( 7 )  assumes that 
Henry's law holds for the monomer in the water 
phase. The volume fractions of monomer j in mono- 
mer droplets and the aqueous phase are, respectively: 

4," = Vy/Vd where j = A ,  B (8) 

r$Y = V y / V ,  where j = A ,  B (9) 

and where V," and VY are the total volumes of 
monomer j in monomer droplets and aqueous phase, 
respectively, Vd is the total volume of the monomer 
droplets, and V,  is the total volume of the aqueous 
phase. 

A combination of eqs. (4) - (9)  yields: 

vy Vd 
Vw4;Dj 

v," = where j = A , B  (10) 

where j = A ,  B and uo < u < u1 (11) 
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and where 

2auj( 4x4; ( u ) ) 
(3v) ' l3RT 

+ 

The overall material balances are as follows: 

where Vj is the total volume of monomer j ,  V, is the 
total volume of the polymer particles, and 

The integral in eq. (18) can be calculated by 
means of any suitable quadrature formula. Integrals 
can be accurately calculated by orthogonal collo- 
cation." To apply this method, the integral is first 
written in terms of a normalized variable x = ( u  
- uo) / ( u1 - uo) , as follows: 

In the collocation method, integrals can be cal- 
culated with high accuracy via the following sum- 
mation formula. 

which requires the values of the weights w h  and the 
values of n ( x h ) ,  @ ( X h ) ,  and pi(%) at  the N + 2 
collocation points. The position of the collocation 
points, that is, the value of x h ,  and the values of w h ,  

depend only on the number of collocation points. 
Algorithms to calculate both w h  and x h  are presented 
by Villadsen and Miche1~en.I~ 

Substitution of eqs. ( l o ) ,  (18), (19), and (20) 
into eq. (14) yields: 

ALGORITHM 

The algorithm, used to calculate the monomer dis- 
tribution for a given PSD, and the volumes of the 
two monomers and water, is as follows: 

1. 
2. 

3. 
4. 

5. 

6. 
7. 

Guess initial values of V,, vd, and V,. 
Assume 

Calculate V2 and V,W using eq. (21 ) . 
Calculate V$ and Vg with eq. (10). Then, 
calculate 

Calculate 4; ( u )  at the collocation points, us- 
ing eq. (11),4;(u) = 1 - & ( u )  - & ( u ) ,  
and V?, by means of eq. ( 18). 
Calculate V,, vd, and V, (eqs. (15)-(17)).  
Repeat steps 3-6 until convergence in V, is 
reached. 

Notice that in step 2, 4 ; ( u )  and 4 ; ( u )  are as- 
sumed to be volume independent. This restriction 
is relaxed in step 5, where they are calculated as a 
function of the volume. On the other hand, conver- 
gence in V, is the best convergence criterion, be- 
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Seed latex particle size distribution. Figure 1 

cause convergence in V, fails when there are no 
droplets in the system and the amount of monomer 
in the aqueous phase is too small to significantly 
change V,. 

In order to validate the algorithm, the swelling 
of a latex with the PSD, shown in Figure 1, with 
two monomers was considered. Unswollen latex 
particle diameters ranged from 20 nm to 100 nm. 
The number of polymer particles and the total vol- 
ume of polymer were calculated by means of eqs. 
(1) and ( 2 ) :  N,, = 5.89 X 1014, and Vpol = 0.158 cm3. 
Two different swelling conditions were considered 
(Table I ) .  In the first, the amount of the two mono- 
mers was large enough to have monomer droplets 
present in the system. In the second, the conditions 
of the so-called interval I11 of emulsion polymeriza- 
tion, namely in the absence of monomer droplets, 
were reproduced, swelling the latex with a small 
amount of the two monomers. Table I and Figures 
2 and 3 present the outputs of the algorithm, cal- 
culated using the arbitrary but reasonable values of 
the parameters presented in Table 11. In order to 
check the algorithm, there is no need that these val- 
ues correspond to a given monomer system. The 
necessary condition is that they are similar to those 
found in different emulsion copolymerization sys- 
t e m ~ . ' ~ - ' ~  The results in Table I and Figures 2 and 

0 

0.15 I I , 1 1 1 1 1 . 1  I 1 , 1 1 1 1 1 1  I * . I  

10.) 10.2 10-1 100 10' 

Swollen Particle Volume x lo1 '(em3) 

Figure 2 
interval I1 conditions (presence of monomer droplets): 

Monomer volume fraction distributions for 

Monomer A Monomer B u ( N / m )  

6 X A A 
12 x 10-~ 0 0 
24 x 10-~ 0 

3 were insensitive to the initial guess. Figures 2 and 
3 show that, as expected, the volume fraction of the 
monomers in the polymer particles increased with 
particle size. The effect is more intense for large 
interfacial tensions and small particle sizes. This 
latter effect during polymerization makes small par- 
ticles grow in volume less than large ones. Also, it 
can be seen that the algorithm can handle both in- 
terval I1 (presence of monomer droplets) and in- 
terval I11 (absence of monomer droplets) conditions, 
without any change in the equations of the model. 
Notice that the volume of the monomer droplets, 
calculated for the interval I11 conditions, is 7 orders 
magnitude lower than the volume of polymer par- 
ticles and aqueous phase, that is, it is negligible. 
This is a definitive advantage in the modelling of 
emulsion copolymerization systems, since otherwise, 
especially in semicontinuous and continuous emul- 
sion polymerization reactors, the existence of 
monomer droplets has to be systematically checked. 

Table I Simulated Conditions and Outputs of the Algorithm (U = 12 X lo-' N/m) 

0.158 0.316 0.237 0.474 0.340 0.364 0.482 0.576 0.424 1.43 X 1.80 X 
0.158 0.032 0.016 0.474 0.200 3 X lo-' 0.480 0.649 0.351 0.99 X 0.84 X 
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Therefore, this algorithm also offers considerable 
advantages over existing methods for the calculation 
of the monomer partitioning in monodisperse sys- 
tems. Simulations, carried out for different emulsion 
copolymerization systems considering monodisperse 
latexes, showed that the computer time was reduced 
by a factor of 4 when the algorithm used in this 
article was used. The extension of the algorithm to 
n -component emulsion polymerization is simple, 
although the availability of the values of the required 
parameters is dubious. 

CONCLUSIONS 

A new algorithm for the calculation of the monomer 
partitioning in emulsion copolymer systems has been 
presented, and examples of the application are given. 
The outputs of the algorithm include the volumes 
of the monomer swollen polymer particles: monomer 
droplets and aqueous phase, as well as the volume 
fractions of the monomer in the aqueous phase and 
monomer droplets, and the distribution of volume 
fractions of the monomers in the polymer particles 
of varying sizes. The outputs of the algorithm are 
not affected by the initial guess. The algorithm can 
handle both interval I1 and interval I11 conditions 
without any change in the equations of the model. 
The algorithm also improves existing methods for 

0.10 1 
t I 

1 0 . ~  10-2 10-1 100 

~ w o ~ ~ e n  Particle Volume x lo1 5(cm3) 

Figure 3 
interval I11 conditions (absence of monomer droplets): 

Monomer volume fraction distributions for 

Table I1 Values of the Parameters 

&a",, 4:;s 0.025 3.33 x 10-~ 
m A B  t %A 1.19 0.87 
X A B  9 X A B  0.4 0.5 
X A P  9 X A P  0.35 0.36 
uA, (m3/mol) 1 x 10-~ 1.2 x 10-~ 
a (N/m) ,  T ( K )  6 X 10-3-24 X 333 

the calculation of the monomer partitioning in 
monodisperse systems. 

The financial support of the CICYT (grant N. MAT 91- 
0195) is greatly appreciated. P. Armitage acknowledges 
the fellowship from the Excma. Diputaci6n Foral de Gi- 
puzkoa. 

NOMENCLATURE 

mij 

wh 

X 

Monomers. 
Parameter defined by eq. ( 12) .  
Partial molar free energy of monomer j in 

Ratio of the equivalent number of segments 

Number particle size distribution function 

Total number of polymer particles. 
Parameter defined by eq. ( 13). 
Gas constant (J/mol K) .  
Temperature ( K )  . 
Molar volume of monomer j ( m3/mol). 
Total volume of the monomer droplets 

Volume of monomer j in the phase k ( cm3). 
Total volume of monomer j ( cm3). 
Total volume of the polymer particles ( cm3). 
Total volume of the polymer ( cm3). 
Total volume of the aqueous phase ( cm3). 
Volumes chosen in such a way that the whole 

PSD is included between them ( cm3). 
Weighting factor, produced by the orthog- 

onal collocation method. 
Normalized volume ( - ) . 

the phase lz (J/mol). 

of monomers i andj .  

( ~ m - ~ ) .  

(cm3). 

W / m )  Monomer A Monomer B SUPERSCRIPTS 

d Monomer droplets phase. 
p Polymer particles phase. 
w Aqueous phase. 

6 X A A 
12 x 10-3 0 0 
24 x 10-3 w O 
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GREEK SYMBOLS 

4; Volume fraction of monomer j in the phase 12 

u Interfacial tension ( N / m ) .  
XY Interaction parameter ( - ) . 

(-1. 
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